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TRIGGERS FOR BIODIVERSITY

» Greenhouse Earth
* Oxygen metabolism & photosynthesis
« Competition & selection forces: evolution

* Increase & decrease of niches:
Permissive Ecology

o Extinction Events

Relative to the geological past, how high Is
biodiversity today?
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The Rise of Oxygen
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cyanobacteria an
eukaryotes?

4 Origin of Oxygenic Photosynthesis?
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Earth’s Biological Clock

Billions of years ago

Mammals

Vascular Humans
plants

Shelly | Origin of
invertebrates ! '

Algal
kingdoms

Precambrian
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Macroscopic
eukaryoles

Cyanobacteria plus
other phototrophs

D. De Marais, Science (2000) 289, 1703



Icehouse /Greenhouse, sea level Fluctuations

through time
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COs Concentration ppm
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Past, present and future atmospheric CO, concentration

predicted future levels

Atmospheric Carbon
Dioxide Concentrations
& Temperature Change
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Arctic Region Annual Mean 1880-2004

Data Source: GHCM 15880-12/2004 - http: fwmew. giss.nasa.gowdata’updatelgistemp/ZonAnn. Ts.txt
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There has been no net warming since 1938.
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http://www.nasa.gov/mpeg/52611main_79-03comp.mpeg

Iceberg splitting, NASA


http://www.nasa.gov/mpeg/52596main_iceberg split 10-15.mpeg







Universal Tree of Life

purple heliobacteria _ cyanobacteria
bacteria

i

sulfur ——— R

bacteria \‘p
green
gliding <
bacteria Bacteria \

Large amount of Horizontal Gene
Transfer has taken place during
the evolution of all bacteria,
Including photosynthetic
prokaryotes

Archaea

>
\

Eukaryote

However, the basic tree
topology probably reflects
a core of vertically
Inherited genes
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Inauguration of the P indi
e (e 2 ~£9Ue,,_Ph0to by Govindjee, 2007

IN 1969, CARL WOESE BEGAN USING
MOLECULAR SEQUENCES OF RNA TO STUDY
THE EVOLUTIONARY HISTORY OF LIFE ON
EARTH, EVENTUALLY DETERMINING THE
FIRST *“TREE OF LIFE." THIS PROJECT LED,
IN 1977, TO THE DISCOVERY OF A THIRD
BRANCH OF LIFE: THE ARCHAEA -~
MICROORGANISMS DISTINCT FROM BACTERIA
(WHICH THEY RESEMBLE) AND EUKARYOTES
(PLANTS AND ANIMALS). THE CONCEFPTS AND
DISCOVERIES EMANATING FROM THIS WORK
HAVE TRANSFORMED BIOLOGY,
PARTICULARLY EVOLUTION, ECOLOGY AND
MICROBIOLOGY.

UNIVERSITY OF ILLINOIS




Transition to Oxygenic Photosynthesis

Extensive gene .
: . Transitional forms
recruitment/Horizontal

Gene Transfer x

Plastid
Origin

Cyanobacteria

e e of
Gloeobacter

Acaryochloris

Anoxygenic Photosynthesis ~ Time —— Oxygenic Photosynthesis



Discovered in 1996 by
Miyashita et al.

|solated from the Western
Pacific Ocean

Contains chlorophyll d as
major photopigment

May represent transitional
form between anoxygenic
and oxygenic
photosynthesis

Some other Chl d organisms
have been discovered in e
2005 (Miller et al. 2005)
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Optical absorption
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Structure of Bacteriorhodopsin

EXTRACELLULAR
SPACE

retinal
linked
to lysine

hydrophobic
core of
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(3 nm)
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Figure 10-33 Molecular Biology of the Cell (€ Garland Science 2008)



Bacteriorhodopsin trimer from Archea Halobacterium
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Evolution of Photosystem Il Protein Complement

Anoxygenic RC Primitive Oxygen Modern Photosystem I
K—\Duplication Evolving RC  Multiple (?) Duplications

»

\?7

Recruitment (from
Type | & Type Il RC's)

The evolution of Photosystem Il proteins has been
partially by gene recruitment and partially by gene
duplication, but most of the proteins are of unknown origin
and have no known homologs in any other organisms



Increase In carbon dioxide concentration
should result In a stimulation In
photosynthetic carbon fixation of between 30
and 50%, primarily due to a reduction In
photorespiration as the ribulose 1:5-
bisphosphate carboxylase/ oxygenase
(Rubisco) carboxylation reaction is favoured
INn these conditions.



However, many plant species grown at elevated
[CO,] do not have increased photosynthesis and
growth to the level of 30-50%.

It Is substantially less than these figures. This is
probably because plants at elevated CO, exhibit an
acclimatory down-regulation, decreasing
photosynthetic potential, particularly with long-term
growth in elevated [CO,].

This acclimatory response is often correlated with
Increased carbohydrate levels together with
reductions In total nitrogen and Rubisco activity.



Therefore, It Is essential to understand how perennial
tree species acclimate themselves to high CO,
environment after years of exposure to the elevated
green house gas.

NO, absorption from soil and its subsequent utilization
cannot keep pace with increased photosynthesis at high
CO, resulting in reduced protein contents and increased
Carbohydrate contents of plants. This would lead to
seed grains having increased starch and decreased
protein.

This challenge needs to be addressed.
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Free Air Carbon dioxide enrichment (FACE) facility built in the campus of
Jawaharlal Nehru University. Mustard (Brassica) plants are grown inside two
FACE Rings maintained at elevated CO, (600 ppm)
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Fig 1. Total chlorophyll content of Brassica campestris cv. Pusa Gold,
Brassica juncea cv. Pusa Bold and Pusa Jaikisan grown in ambient
carbondioxide (385 umol molt) and elevated carbondioxide (585 pmol
mol1) in three different years . Each data point is an average of six
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Fig 2. Carotenoids content (A) and chlorophyll a/b ratio (B) of
Brassica campestris cv. Pusa Gold, Brassicajuncea cv. Pusa Bold
and Pusa Jaikisan grown in ambient carbondioxide (385 ppm)
and elevated carbond|OX|de (585 ppm) in three different years .
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Fig 3.Total Protein Content of Brassica campestris cv. Pusa Gold,
Brassica juncea cv. Pusa Bold and Pusa Jaikisan grown in ambient
carbondioxide (385 ppm) and elevated carbondioxide (585 ppm) in
three different growing seasons . Each data point is an average of six
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Fig 4. Fo, Fm and Fv/Fm in the leaves of Pusa Gold, Pusa Bold
and Pusa Jaikisan in ambient (385 ppm) and enriched CO,
concentrations (585 ppm).



PUSA GOLD LIGHT RESPONSE CURVE
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Fig. 13 Photosynthesis (net CO, assimilation rate) light response curves and quantum yield of attached leaves of Brassica
campestris (Pusa Gold) plants grown in ambient and elevated CO, concentrations. A, Net CO, assimilation rates of attached leaves
of Brassica campestris (Pusa Gold) plants were monitored by IRGA (Licor 6400-XT portable photosynthetic system) in ambient and
elevated CO, at different light intensities. Light response curves were measured upto 1200 ymol of photons m=2 s at 25°C. B,
Relative quantum yield of CO, fixation by leaves from Brassica juncea (Pusa Jaikisan) plants grown in ambient and elevated CO,.
Quantum yield was measured from the above photosynthetic rate after the IRGA chamber reached to a steady-state. Light intensity
curves at limiting light intensities i.e., upto 100 pmol of photons m=2 s-1; the slopes of these curves provide relative quantum yield of

CO, fixation by leaves. Leaves were pre-exposed for 15 minutes at 700 ymol photons m=2 s prior to CO, assimilation measurement.
Thece eavnarimente ware done thrice with cimilar reciilte Earh dAata nnint ic the avaerane nf civ renlicatee and the arror har renrecentce



PUSA BOLD LIGHT RESPONSE CURVE
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Fig. 14 Photosynthesis (net CO, assimilation rate) light response curves and quantum yield of attached leaves of Brassica
juncea (Pusa Bold) plants grown in ambient and elevated CO, concentrations. A, Net CO, assimilation rates of attached
leaves of Brassica campestris (Pusa Gold) plants were monitored by IRGA (Licor 6400-XT portable photosynthetic system) in
ambient and elevated CO, at different light intensities. Light response curves were measured upto 1200 ymol of photons m-
s at 250C. B, Relative quantum yield of CO, fixation by leaves from Brassica juncea (Pusa Jaikisan) plants grown in ambient
and elevated CO,. Quantum yield was measured from the above photosynthetic rate after the IRGA chamber reached to a
steady-state. Light intensity curves at limiting light intensities i.e., upto 100 ymol of photons m-2 s-1; the slopes of these
curves provide relative quantum yield of CO, fixation by leaves. Leaves were pre-exposed for 15 minutes at 700 pmol
photons m-2 s prior to CO, assimilation measurement. These experiments were done thrice with similar results Each data
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Fig. 15 Photosynthesis (net CO, assimilation rate) light response curves and quantum yield of attached leaves of
Brassica juncea (Pusa Jaikisan) plants grown in ambient and elevated CO, concentrations. A, Net CO, assimilation
rates of attached leaves of Brassica campestris (Pusa Gold) plants were monitored by IRGA (Licor 6400-XT portable
photosynthetic system) in ambient and elevated CO, at different light intensities. Light response curves were
measured upto 1200 pmol of photons m-? st at 25°C. B, Relative quantum yield of CO, fixation by leaves from Brassica
juncea (Pusa Jaikisan) plants grown in ambient and elevated CO,. Quantum yield was measured from the above
photosynthetic rate after the IRGA chamber reached to a steady-state. Light intensity curves at limiting light
intensities i.e., upto 100 pmol of photons m-2 s1; the slopes of these curves provide relative quantum yield of CO,
fixation by leaves. Leaves were pre-exposed for 15 minutes at 700 ymol photons m2 s prior to CO, assimilation
measurement These experiments were done thrice with similar results Each data noint is the averaae of six replicates
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Vcmax

73.65

74.72

74.88

73.63

66.60

65.80

Jmax

155.17

161.14

149.90

155.00

137.90

146.04

Table 1. Vcmax and Jmax values of of Brassica campestris cv.
Pusa Gold and Brassica juncea cv. Pusa Bold and Pusa
Jaikisan plants grown in ambient (385 ppm) and elevated CO,
concentration (585 ppm)



RESPIRATION RATE
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Fig. 23 Brassica campestris cv Pusa Gold grown in (A) ambient CO, (
385 ppm) or (B) elevated CO2 (585 ppm) inside the FACE ring. The

Arown in ele




PUSA BOLD AMBIENT PUSA BOLD ELEVATED

Fig. 24 Brassica juncea cv Pusa Bold grown in (A) ambient CO,
( 385 ppm) or (B) elevated CO2 (585 ppm) inside the FACE ring.
The Plants grown in elevated CO, had larger number of leaves,




PUSA JAIKISAN AMBIENT PUSA JAIKISAN ELEVATED

Fig. 25 Brassica juncea cv Pusa Jaikisan grown in (A) ambient CO,
( 385 ppm) or (B) elevated CO2 (585 ppm) inside the FACE ring.
The
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Figure. 10 Plant height (A), Fresh weight per plant (C) and Dry weight per plant (D) of Brassica campestris
(Pusa Gold), Brassica juncea (Pusa Jai Kisan) leaves grown in ambient and elevated CO, (585 umol mol?) in
three different growing seasons. Each data point is the average of six replicates and the error bar represents SE.
Asterisks indicate significant differences determined by t test (*P < 0.05, **P<0.001).
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PUSA JAI KISAN

Figure. 11 Seed weight per plant (A), 1000 seed weight (B), seed morphology (C;D) of Brassica campestris (Pusa
Gold), Brassica juncea (Pusa Jai Kisan) leaves grown in ambient and elevated CO, (585 umol mol?) in three
different growing seasons. Each data point is the average of fifty replicates and the error bar represents SE.
Asterisks indicate significant differences determined by t test (*P < 0.05, **P<0.001).
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Figure 12. The diurnal measurement of Starch content from morning to evening, of Brassica campestris (Pusa Gold), Brassica
juncea (Pusa Jai Kisan) leaves grown in ambient and elevated CO, (585 umol mol-) . Each data point is the average of six
replicates and the error bar represents SE. Asterisks indicate significant differences determined by t test (*P < 0.05,
**P<0.001).
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Fig. 13. 2-D gel of PEG fractionated soluble proteins of ambient (left panel) and elevated (right panel) Brassica, Brassica campestris
(Pusa Gold) leaves grown in ambient and elevated CO, (585 umol mol-1). 2-D gel was run with 800 pg of protein and Coomassie
Brilliant Blue (CBB) stained.



Puntional category distribution of differentially expressed
proteins (based on percentageof identified proteins)
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Fig. .. Functional category distribution of differentially expressed proteins in 2
D electrophoresis gel of PEG fractionated soluble proteins of ambient-and
elevated -CO,- grown Pusa Gold.



Increase in ocean temperature will release the
dissolved CO, to the atmosphere further
Increasing global warming.

he temperature on sea surface will percolate
down to the ocean floor resulting in rise of sea
level up to 30 meters by the end of this millenium
(year 3000).

Therefore, It is essential to generate crop plants
Tolerant to high temperature and water logging
especially for coastal region.



How to combat elevated CO,

*Reduction in green house gas emission

‘Increased CO, fixation by plants especially by
reforestation program

Plantation of fast-growing trees I.e. Poplar
(Populus deltoides) to have long-term carbon
sequestration

*Plantation of tree species of mangrove

vegetation In the sea coast for carbon

sequestration and conservation of soill
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As world population is increasing, the
demand on Agricultural land is also
Increasing.

A country like India cannot afford to loose
agricultural land for generation of bioethanol
l.e. from sugar cane.

Therefore we should look into the sea rather
than land mass for generation of bioethanol.



INDIA’S POSITION

Large coast line 7000 km

National Coordinated Program for large scale
cultivation and utilization of 3-4 taxa having
both domestic and international market.

Gracilaria verrucosa u

Kappaphycus alvarezii “

Sargassum sp.

Porphyra sp.
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BIOLOGICALLY SUSTAINABLE
HYDROGEN PRODUCTION

The development of new systems to produce
zero CO, emission fuels for the future is one of
the greatest challenges facing our society.

A select group of photosynthetic organisms have
evolved the ability to harness the huge solar

energy resource to drive H,, fuel production from
H,0.



Hydrogenase under anaerobic
conditions essentially acts as a
H+/e- release valve by
recombining H+ from the medium
and e- from reduced ferredoxin to
produce H2 gas that Is excreted
from the cell by the reaction
2H+ + 2Fd- 22> 2>—2>-2>H2 + Fd
hydrogenase
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Oxygenic microbes*
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*Algae and
cyanobacteria

Microalgae:

a source of energy
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Chlamydomonas reinhardtii H2 Metabolic Pathways
Glycolysis

ADP ATP
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_ efficiency > 1% in the lab.
Photosynthesis



Co-occurrence of Aerobic Photosynthesis,
Anaerobic Fermentation and Respiration

CHLOROPLAST H?2
ATP
H20 80% T reductant /
Oxygenic Photosynthesis — H2ase
02 20%
Starch » pyruvate
(reductant) \i\naeroblc fermentation
02 acetate, formatie
lactate, ethanol
MITOCHONDRIA
CO?2 OX|dat|Ve reductant
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Immediate Challenges

Can we (a) develop an aerobic system
that can utllize the full potential of
photosynthesis by addressing the

hydrogenase O,-sensitivity problem or

(b) Is Improving the H,-production
rates of our anaerobic sulfur-deprived
system the best we can do?



Structure of Algal Hydrogenases

Two [FeFe]-

have been
discovered |

hydrogenases
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Increasing the O2 Tolerance of Algal Hydrogenase

Molecular dynamics modeling of gas diffusion in
an [FeFe]-hydrogenase indicated two well-defined
pathways for O, diffusion through a series of
dynamic cavities and multiple pathways for H,
diffusion.

H2 Pathways O2 Pathways



Molecular Engineering O2 Tolerance into the
Hydrogenase

O,-blocking
mutations

%"

4

active
site

Engineering efforts focused in the area of the high energy
barrier. Larger amino acids were substituted for, sterically
hindering access of O2 to the catalytic site.



Previously Known Algal Genes Associated
Directly with H, Photoproduction

V5
o

* The hydrogenase structural genes
(HydAl and HydA2).

* The hydrogenase assembly
genes (HydEF and HydG).

« Starch metabolism genes (Sta7).
 Light-harvesting genes (Lhc).

« Sulfate permease (SulP; controls
sulfate uptake into the algal
chloroplast).



CONCLUSIONS
* To better understand photosynthetic, growth and
productivity responses of crop plants, especially
perennial tree species to elevated CO2 and higher
temperature in FACE environment.
 To find a mechanism to restore the protein content
of seed grains at high CO,
 Plantation of fast growing tree species I.e., poplar
for long term carbon sequestration
 Plantation of tree species mangrove in the coastal
regions
» Generation of bioethanol from sea sources i.e.,
marine algae
* Photosynthetic generation of a zero CO, emitting
fuel. H,. from water bv fresh water and marine algae






