Carbon Cycle Modelling and Measurements – Robust Flux Estimation

P.S. Swathi, CSIR-Fourth Paradigm Institute Recent Advances in CO2 Capture Technologies and Sectoral Applications, Delhi, 1 Sep. 2018

- India's COP 21 commitments (by 2030)
- 33-35 % improvement in energy intensity from 2005 levels
- 2.5 3 GTCO2 (0.6 0.8 GTC) additional forest sink
- Question: How do we quantify this?
- Bottom-up and Top-down approaches

Atmospheric transport model

MOZART Transport model Bayesian Inversion

- Need very accurate measurements traceable to WMO-NOAA primary standards
- A good density of measurements
- A procedure to assimilate measurements into models to yield robust flux estimates

Reference Station set up in Hoskote near Bangalore

Schematic diagram of the station

Calibration with NOAA primary

- Calibration of Secondary (working) standards
 - NOAA cylinders are connected in the sequence and the calibration is carried out with three cycles of NOAA and secondary cylinders in succession
 - Each cylinder gas goes through the instruments Picarro and LGR for 20 minutes
 - Calibration curve is fitted and with the parameters a0 and a1 in the equation y=a0 + a1x, the values are corrected on the secondary cylinders
 - Using these corrected secondary cylinder values, further the measurements are corrected

Compositions of NOAA and Secondary cylinders

• NOAA cylinders:

•	TANK	CO2 ppm	CH4 ppm	CO ppb	N2O ppb
•	CAL 1	341.95	1.6335	66.1	300.63
•	CAL 2	74.15	1.7839	108.1	313.75
•	CAL 3	396.95	1.939	152.4	328.12
•	CAL 4	429.0	2.087	163.8	332.01
•	CAL 5	464.0	2.3424	286.3	341.28
•	CAL 6	503.18	2.6107	470.7	350.61

• Secondary cylinders:

•	ΤΑΝΚ	CO2 ppm	CH4 ppm	CO ppb	N2O ppb
•	CAL 1	370.0	1.805	50	310.3
•	CAL 2	400.1	1.899	100.2	330
•	CAL 3	420.4	2.099	250	335.8
•	CAL 4	480	2.400	500.4	351.6
•	TGT ST	400.2	1.901	150	330.7
•	TGT LG	460	2.301	500.3	342.2

• CO2 Result: (Picarro)

- NOAA cylinders:
- ao= -0.473292345073 a1= 0.994806213121

NOAA values (ppm)

Calibration Means (ppm)

- 341.95374.15
- 396.95

•

- 429.0
- 464.0
- 503.18

 $339.68855151 \pm 0.0157976113582$ $371.72446246 \pm 0.0130839226625$ $394.4407502 \pm 0.0145592964574$ $426.31756892 \pm 0.0172201473859$ $461.09896705 \pm 0.0174353596751$ $500.08126644 \pm 0.0201042624759$

11.91 °N -79.81 °E

PICARRO SEQUENCE - PONDICHERRY

Calibration computing

Standard Concentration

Pondichery (PON)

Flux Estimations - Transcom Setup

- 11 Land and 11 Ocean Regions
- Repeating 1996 NCEP winds
- Presubs: FF90 and FF95, NEP and Ocean
- Green's Functions: Monthly unit emissions tracked for 36 months.
- Transport code: MOZART T-42 resolution (128*64*28)
- Cyclostationary case with TDI inversion
- Station data 71
- Priors based on L3 case

1990 carbon emissions

1000 tonnes C/grid cell

1995 carbon emissions

1000 tonnes C/grid cell

CASA Net Ecosystem Production

g C/m2/month

CASA Net Ecosystem Production

g C/m2/month

Takahashi CO2 flux

kg C/m2/second x 10^{-9}

Takahashi CO2 flux

kg C/m2/second x 10^{-9}

CASA NPP

g C/m2/second

Sec.

w 8

1

540

200

800 700

н

140

ᡂ 100

. 40 50

- 新新校。

Z ; 10

100°E

Z : 8

North Pacific Temperate basis function

kg C/m^{2}/second x 10^{-10}

Horizontal Mixing and Trasport

After Six months

Vertical mixing and transport over boreal North America

After three years

FERRET Yer. 6.2 NDAA/PMEL TNAP Dec 9 2010 14/03/24

FERRET Yer. 6.2 NDAA/PMEL TNAP Dec 9 2010 14/03/06

Bayesian Inversion

• D = JS

- $Z = (S-S_0)^T C(S_0)^{-1} (S-S_0) + (D-JS_0)^T C(D)^{-1} (D-JS_0)$
- $S = S_0 + (C(S_0)^{-1} + J^T C(D)^{-1}J)^{-1}(D JS_0)$
- $C(S)^{-1} = C(S_0)^{-1} + J^T C(D)^{-1} J$

No	Name	Prior	Post	Prior Unc	Post Unc	FF/O	Res	Total	Robust	
1	Boreal N. America	0.000	0.401	1.199	0.319	0.04	0.929	0.401	Y	
2	Temp. N America	-0.534	-0.681	2.890	1.190	1.92	0.831	-0.681	Y	
3	Trop. N America	0.547	-0.137	4.633	2.198	0.23	0.775	-0.137	Y	
4	South America	0.000	-1.321	3.024	2.312	0.14	0.415	-1.321	N	
5	North Africa	0.152	1.314	2.667	1.902	0.16	0.491	1.314	N	
6	Southern Africa	0.148	-0.122	3.215	2.005	0.11	0.610	-0.122	Y	
7	Bor. Eurasia	-0.396	-1.161	2.404	1.045	0.21	0.810	-1.161	Y	
8	Temp. Asia	0.297	-1.485	2.741	1.018	2.38	0.862	-1.485	Y	
9	Trop. Asia	0.806	1.887	2.091	1.776	0.64	0.278	1.187	Ν	
10	Australia	0.000	-0.058	1.109	0.333	0.11	0.910	-0.058	Y	
11	Europe	-0.100	-1.518	2.411	0.603	1.92	0.94	-1.518	Y	
12	North Pac.	0.000	1.003	0.960	0.583	-0.50	0.631	0.500	Y	
13	Eq. W Pac.	0.000	-0.042	0.710	0.558	0.15	0.381	0.111	Ν	
14	Eq. E Pac.	0.000	-0.050	0.750	0.631	0.46	0.291	0.417	N	
15	South Pac.	0.000	-0.615	1.320	0.686	0.23	0.730	0.845	Y	
16	Arctic Ocean	0.000	0.352	0.560	0.270	-0.44	0.770	-0.086	Y	
17	N Atlantic	0.000	-0.076	0.640	0.521	-0.29	0.338	-0.368	N	
18	Eq. Atlantic	0.000	0.036	0.640	0.557	0.13	0.24	0.165	N	
19	S Atlantic	0.000	0.058	0.690	0.484	-0.13	0.508	-0.070	Ν	
20	South Ocean	0.000	1.304	1.580	0.271	-0.90	0.971	0.417	Y	
21	N Indian	0.000	-0.190	0.890	0.730	0.12	0.327	-0.072	N	
22	S Indian	0.000	-0.205	0.740	0.456	-0.55	0.620	-0.759	Y	
	Total					FF=7.86 O =	FF=7.86 O = -2.19			

Principles of Network Design

• Borrowed from geophysics

$$\mathbf{C}(\vec{S})^{-1} = \mathbf{C}(\vec{S}_0)^{-1} + \mathbf{J}^T \mathbf{C}(\vec{D})^{-1} \mathbf{J}$$

- Choose some property of $\mathbf{C}(\vec{S})$ (posterior covariance)
- \bullet Manipulate ${\bf J}$ e.g. choosing sampling locations
- Use nonlinear minimization to optimize

Genetic Algorithms

- Genetic Algorithms
- Gene = List of values (Potential Stations)
- Algorithm maintains population of genes
- Genes breed, mutate and compete each generation
- "Generation" = iteration of algorithm
- Competition determined by scoring function
- Two choices

Trace of C(S) or C(S8)

Life-cycle of an iteration

- Cull population, leaving only best genes
- Refill population by cloning survivors
- Breed from existing population
- Mutate existing population

Culling

- Rank genes by score and sort
- Assign a survival probability according to rank e.g. P(n) = n/N
- For each gene, choose uniform random number $x \in [0,1]$ and eliminate gene is
- P(n) is user-specified

Refilling

- Choose gene at random
- Choose uniform random number $x \in [0, 1]$
- If x < P(n) copy gene to gap left by culling

Breeding

- Breeding probability P_B set by user
- Choose pairs of "parents" at random
- Choose uniform random $x \in [0, 1]$
- If $x < P_B$ create new gene with random combination from parents
- Children kill and replace parents

Mutation

- Mutation probability P_M set by user
- For each value in each gene choose uniform random $x \in [01]$
- If $x < P_M$ replace by random value

Summary of user inputs

- Population size
- Number of generations
- Survival probability
- Breeding probability
- Mutation probability
- Population and generations computational trade-off, others depend on probl
- Balancing converging too fast and never optimising

Adapting GA to the network problem

- Convert i,j,k indices of T-42 grid into a unique number
- Construct gene of a given length by randomly selecting a set of stations.
- Construct the J matrix by combining these with existing Transcom G matrix.
- Construct covariance matrix for data
- Perform Transcom inversion for each gene.
- Compute score (either trace of whole matrix or subset)
- Perform GA operations and iterate.

Set-up details

- Green's functions calculated with Mozart transport model
- Population = 200, generations = 500 or 1000 (4 days on Altix)
- Test configurations of $\mathbf{C}(\vec{S}_0)$ and $\mathbf{C}(\vec{D})$.
- Test additions to current network or "ground-up" design

Testing algorithm

FERRET Var. 5.41 NDAA/PMEL TNAP Feb 12 2008 11:02:41

DATA SET: network_50stat_modify_cd_nep.nc

Tests with Known answers

- Test finding known minimum
- Add one station to current network
- Test each gridpoint in turn
- Generates map of score
- Test if GA can find this minimum

Map of score and GA attempt

FERRET Var. 5.41 NDAA/PMEL TNAP Feb 12 2008 12:27:02

DATA SET: inv_sens.nc

Test finding preferred stations

- Choose some stations with very much lower $\mathbf{C}(\vec{D})$ than the rest
- GA should find these independent of \mathbf{J} .

Test case with preferred stations

Z (hybrid_sigma_pre) : 995

EPRET Ver. 5.41 IDAA/PMEL TNAP 12 2008 14:44308

DATA SET: nep_sd.nc

Constructing $\mathbf{C}(\vec{D})$

- Usually don't have measurements so no strict algorithm
- CO_2 measurement stations should represent model grid cell
- Should not be too variable (signal-noise)
- Most local influence terrestrial biosphere + transport
- Combine these then calibrate against real stations

Maps of $C(\vec{D})$

PENET WE BH HEAVPARE THAP F6 12 2000 15 H JB

Z (hybrid_aigmo_pre) : 995

NEP + NPP

Altitude dependence of $\mathbf{C}(\vec{D})$

Optimised Networks for global observation

Optimised Networks for global observation

Optimised Networks for observation of South/Central Asia

FERRET Yer, 3,41 NDAA/PHEL TNAP Feb 12 2018 16231:12

DATA SET: nep_sd.nc

Z (hybrid_sigma_pre) : 995

Rog 8 case

Conclusions

- Inversions and genetic algorithms can be used in combination to design networks
- Various user inputs are crucial, e.g. choice of score and covariances
- Local noise suggests the use of airborne observations
- Targeting regional fluxes suggests dense regional network