

Aqueous mineral carbonation and CO₂ reactions in basalts for forming mineral carbonates

S.N.Charan National Geophysical Research Institute (Council of Scientific & Industrial Research) Hyderabad – 500 007

Present day atmospheric concentration of CO₂~ 320 ppm

>Environmentally safe permissible upper limit ~ 450 ppm

>Global CO_2 concentration risen by 25% over last 200 Yrs.

- Excess usage of Fossil Fuels
 To meet ever growing Energy Demands–
 Increase in atmospheric accumulation of CO₂
 - * Triggering perceptible changes in Climate--
 - Melting of Polar Ice Caps
 - Recession of Glaciers
 - Slow but inexorable rise in Sea Levels

Capture can occur:
 At the point of emission when absorbed from air.

Storage locations include: ∻underground reservoirs.

dissolved in deep oceans.

converted to solid material.

trees, grasses, soils, or algae

Storage Options- Geological (Best)--

Capacity & security for sequestering large quantity of CO_2 with economic benefits. **Potential Storage Sites--**Deep Saline Aquifers Basic/Ultrabasic Rock Formations (CFB, LC,GSB) Oil and Gas Fields (EOR) Abandoned Coal Mines (CBM)

- Geological sequestration of CO₂ to be a practicable large scale disposal option, the injected CO₂ must remain safely underground for geological time scales.
- Best achieved by Mineral Trapping, allowing the natural buffering processes sufficient time to reduce the global atmospheric CO₂ levels to environmentally safe and acceptable levels.

Stores a

Generalised Geology Map of Deccan Volcanic Province,India (Modified after Richa Sahu et. al. 2003)

Why Deccan Flood Basalt Province ?

- Large and continuous aerial extent (500,000 Sq. Km.) Number of sequential basalt flows (av. >10) Favorable structural and interflow features. Reactive Fe-Mg-Ca and Na-rich silicate mineral assemblages Underlain at places by Mesozoic Sediments (SST) -- suggesting that the DVP can be a potential deep underground storage reservoir for CO₂
 - -- (to be proved by pilot scale studies)

Objectives

- To carryout laboratory scale aqueous mineral carbonation experiments under simulated conditions, using basalt-picrite, water and CO₂ (reactants) aimed at mineral carbonation and document the nature of carbonates (products).
- To document the reaction kinetics under varied P, T, pH conditions between CO₂, the primary silicate minerals in basalts namely olivine, pyroxene and plagioclase (reactants) and the secondary carbonates, serpentine and clay (products) and estimate the rate and extent of mineral carbonation.

Rationale

- Study: Knowledge base on how CO₂ reacts (its reaction kinetics as a function of T,P, porosity/permeability) through low to high-T experiments to better understand the dissolution kinetics & affinity of Ca/Mg/Fe-silicates for forming the secondary carbonates.
- Computing rate of carbonate mineral formation in basalt flows requires: (a) Solution conc. of Ca/ Mg/ Fe required to precipitate stable carbonates and (b) the concentration of dissolved CO₂.

Deccan Basalt Province

Favorable megascopic features in DVP

Intertrapeans between basalt flows, Igatpuri (Ma)

Pipe vesicles in basalts, Igatpuri (Ma)

Amygdular basalt, Igatpuri (Ma)

Interflow Features in a Basalt Flow Unit at Kalsubai Hill (Ma)

Mineralogy of Picrites

Mineralogy of Tholeiites

Simulation studies

 Preliminary Aq.Experiments using Picrite (Igatpuri Formation) & CO₂ (@100^o C, 60 bars CO₂ pressure) for 5 months—in 3 steps

CO₂ dissolved in an Aq.phase (CO₂+H₂O—H₂CO₃
 Fe/Mg/Ca leaching facilitated by protons (Fe/Mg/Ca-silicates(s)+2H+(aq) (Fe/Mg/Ca)²⁺(aq)+SiO₂+H₂O
 Fe/Mg/Ca bearing sec. carbonates formed (Ca/Mg)²+(aq)--(Ca/Mg) CO₃(s)+H⁺(aq).

★ A general mineralization reaction scheme is: CO_2 (g) \rightleftharpoons Kh CO₂ (aq) (1) CO_2 (aq) + H₂O \rightleftharpoons K1 HCO₃⁻ + H⁺ (2)

Where Kh=Henry's constant; K1=Equilibrium constant. Pressurization with CO_2 (g) produces Carbonic acid (CO_2 (aq)), bicarbonate anions and H⁺ via reactions (1 & 2) lowering the solution pH.

Causative exothermic mineral reactions

- $2Mg_2SiO_4(OI) + 2H_2O \longrightarrow Mg_3SiO_5(OH)_4$ (Serp) + MgCO₃ (Mag).
- CaAl₂Si₂O₈(Plag)+2H₂O + CO₂ → CaCO₃(Cc)+AlSi₂O₅(OH) (Clay).
 Both the above reactions are exothermic hence they releasing lot of heat energy during this process which can be trapped to generate electricity on a small scale.
 - Computing the rate of carbonate mineral formation in the basalt flows requires:
- solution conc. of Ca, Mg, Fe and Mn required to precipitate stable carbonates
- release rate of Ca, Mg, Fe & Mn from the basalt
- the concentration of dissolved CO₂.

In-situ mineral carbonation

- ✓ $CaO+CO_2 \longrightarrow CaCO_3+179 \text{ kJ/mole.}$ MgO+CO₂ → MgCO₃+118kJ/mole.
- Carbonation reaction is thermodynamically favored –carbonates are at lower energy state—CO₂.
- ✓ $Mg_2SiO_4+2CO_2 \longrightarrow 2MgCO_3+SiO_2+95kJ/mole.$ 140 gms 88gms 168gms 60gms
- ✓ $2Mg_2SiO_4+CO_2(g)+H_2O \longrightarrow Mg_3Si_2O_5(OH)_4+MgCO_3+16.5$ Kcal 280gms 44gms 36gms 276gms 84gms

Laboratory Simulated Mineral Carbonation

Secondary Ca/Mg/Fe carbonates formed by reacting CO₂ and Picrite (Western DVP)

200µm

60µm

EDS Spectrum

Raman spectra of secondary carbonates

FTIR spectra of secondary carbonates

