Plastic waste and its Impact

Sourabh Manuja Associate Fellow, The Energy and Resources Institute

Plastic Market

Parameter	Value
Estimated size of plastic processing in value (FY15)	~INR 1 lakh crore
Market size in volume (FY15)	13.4 MMTPA
Processing Units	> 30,000
Technical manpower (as per CIPET)	11 lakh employees
Growth Rate	10-11%
Per Capita Plastic Consumption	11 kg (World: 28kg)

Source: FICCI, 2017

Sector wise plastic consumption

(Swachh Bharat Mission, 2018)

Packaging Industry-Growth Scenario

- With rising nos. of middle class consumers Indian packaging industry will grow at a CAGR of 9.2% in 2016-2021, as compared to 6.2% during 2011-2016
- Flexible Packaging leads growing at a CAGR of 8.9% during 2016-2021 with major contributions from the Food, Household Care, and Cosmetics & Toiletries industries
- During this period, the Soft Drinks and Food industries will be the highest packaging market share gainers with share growth of 3.4% and 1.3% respectively.

Source: **Trends and Opportunities in the Indian Packaging Industry: Analysis of changing packaging trends in the Food, Cosmetics and Toiletries, Beverages and Other Industries, Research and Markets, April 2017.**

Source: AIPMA and Plastindia, TATA Strategic Analysis

Growth of Plastic Consumption

- 2015-13.4MMTPA
- 2020-22.0MMTPA

Source: Industry reports, TATA Strategic Analysis

Growth Drivers

Structure of Plastic Industry in India

High Dominated by ~15 Polymer large industrial groups Manufacturers End-User Industries Concentration Dominated by ~4.000 Equipment ~200 players unorganized Manufacturers Recycling units Players ~3,500 organized units Figure rited with ~30.000 units **Plastics** mostly operated by small players Processors Low Flow of equipment Flow of processed plastics Flow of recycled plastics Flow of virgin polymers

Source: CRISIL, Plastindia Foundation, Kanvic, TSMG Analysis

Plastic Waste Status in India

Plastic Waste generation from Indian states (MT/yr)

As of 2017, India's total plastic waste generation- 15722 TPD (P. Singh, 2016)

On an average, about 60% i.e. 9205 tonnes plastic is recycled. This recycle rate is very large in comparison to developed countries (10-15%).

Largest Plastic Waste Generating Cities

City	Waste Generated TPD (2015)
Delhi	689
Chennai	429
Kolkata	426
Mumbai	408
Bangalore	314
Hyderabad	199

Plastic Waste composition in some cities

Average Plastic Waste Composition (2015)

Sources and fate of packaging waste

The Energy and Resources Institute

Source: IIP

Plastic recovery flow diagram

Impacts of Plastic Pollution

Impact of unmanaged plastic waste

- These plastic items such as thermocol, Styrofoam, transparent and colored plastics, only tend to break down into smaller particles.
- On reaching to water bodies they continue to either stay suspended, or settle in the sediments, blocking transfer of oxygen and percolation of water through the soil.
- Through their continual existence these plastic articles also tend to be consumed by plankton consuming animals and hence enter the food chain as well.
- Presence of micro plastics as marine debris, often ingested by freshwater fauna, and thereby entering the food chain.
- River Yamuna in India faces discharge of industrial waste of which phthalic acid esters, hazardous compounds that are found in PVC (also blended in plastics to enhance their plasticity).
- These phthalates leach out in the vicinity- both land and water causing serious concerns to the biota of the river and indirectly to human health as well.

Impact of unmanaged plastic waste

- Another common method of managing collected and non recyclable plastic waste in India is landfilling.
- Waste is dumped in low lying areas.
- Because these areas are prone to flooding, there is higher possibility of contamination of surface water during rains.
- Leachate from plastic waste is highly toxic and it deteriorates the ground water quality as it permeates through the soil, especially in the rainy season.

Alarming Scenerio

- Plastic rubbish will outweigh fish in the oceans by 2050 unless drastic action is taken to recycle it.
- 95 percent of plastic packaging is thrown away after a single use.

Is **Plastic** a Problem?

Accounts for 40% of Global packaging mix PET is fast replacing glass and aluminum in packaging market Glass and aluminum containers yield 230% and 175% more atmospheric emissions vis-à-vis PET

Contribute 68% and 18% less solid waste by weight vis-à-vis glass and aluminium containers India has low per capital consumption of PET (0.3 kg) as compared to global average of over 2 kgs

Recycling each plastic bottle can conserve enough energy to light a 60W light bulb for up to 6 hours

Recycling 1 ton of PET containers saves 6 cubic meters of landfill space Recycling 1 ton of PET saves 1.5 tons of Carbon Dioxide vs. land filling or incineration

70 per cent PET is recycled in organised sector in India

Is Plastic a Problem?

- Using resources already in the human economy consumes much less energy than virgin materials, up to 95% less energy in case of aluminum and 80% in case of plastics.
- Recycling is an essential part of responsible materials management and helps to shift from a 'linear' to 'circular' economy. It helps in generating more jobs, retrieving valuable products as sources of revenue, reduces waste transportation costs and emissions along with landfill expenses.
- Plastic has low energy requirements during production, hence considered to be energy efficient. It consumes about ~25% less energy in production compared to other alternatives.
- It results in lower emission of CO₂. Thus when compared to glass or aluminum plastics results in lighter environmental footprint. However, plastic is sustainable choice only if recycled and disposed of properly.
- Segregation of waste at source, promotion of waste management infrastructure and increased bio-based plastic are the key's to manage plastic pollution.

Requirement- Proper management of Waste

- Problem: rather organizational than technical
- Refuse disposal is non profit business
 -> looked as an unwanted side effect of development.
- Proper operation and monitoring is required at every functional element of MSW management.

Suggested Actions

Plastic degrading bacteria (Yoshida S. et. al 2016)

Suggested actions that can have a deep impact

- Minimize single-use plastic packaging and find sustainable alternative materials.
- Make brand-owners responsible for the environmentally sound management of the packaging at the end of its life.
- Introduce incentives for the collection and recycling of plastic packaging.
- Increase the value of plastics to incentivize plastic collection in countries where informal systems of waste picking and recycling prevail.
- Evolving and implementing the concept of Design for Recyclability (DfR) which would involve addressing the following issues:
 - Design and fabricating a product for easy dismantling after end of life (e.g. automobiles are required to be 90 % recyclable in Europe at the end-of-life)
 - Promoting products with modular designs with longer life where different components can be replaced/changed as the need may be so that the product's entry into the waste stream is delayed (e.g. Dell computers)
 - Controlling use of dyes and additives and look for non-hazardous substitutes

Thank you!

"We Do Not Inherit the Earth from Our Ancestors; We Borrow It from Our Children"

-By Moses Henry "Moss" Cass

http://homegrown.co.in/indias-hidden-environmentalists-profiling-3-cities-